163 research outputs found

    Sharp Computational-Statistical Phase Transitions via Oracle Computational Model

    Full text link
    We study the fundamental tradeoffs between computational tractability and statistical accuracy for a general family of hypothesis testing problems with combinatorial structures. Based upon an oracle model of computation, which captures the interactions between algorithms and data, we establish a general lower bound that explicitly connects the minimum testing risk under computational budget constraints with the intrinsic probabilistic and combinatorial structures of statistical problems. This lower bound mirrors the classical statistical lower bound by Le Cam (1986) and allows us to quantify the optimal statistical performance achievable given limited computational budgets in a systematic fashion. Under this unified framework, we sharply characterize the statistical-computational phase transition for two testing problems, namely, normal mean detection and sparse principal component detection. For normal mean detection, we consider two combinatorial structures, namely, sparse set and perfect matching. For these problems we identify significant gaps between the optimal statistical accuracy that is achievable under computational tractability constraints and the classical statistical lower bounds. Compared with existing works on computational lower bounds for statistical problems, which consider general polynomial-time algorithms on Turing machines, and rely on computational hardness hypotheses on problems like planted clique detection, we focus on the oracle computational model, which covers a broad range of popular algorithms, and do not rely on unproven hypotheses. Moreover, our result provides an intuitive and concrete interpretation for the intrinsic computational intractability of high-dimensional statistical problems. One byproduct of our result is a lower bound for a strict generalization of the matrix permanent problem, which is of independent interest.Comment: 57 pages, 4 figure

    Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time

    Full text link
    Sparse principal component analysis (PCA) involves nonconvex optimization for which the global solution is hard to obtain. To address this issue, one popular approach is convex relaxation. However, such an approach may produce suboptimal estimators due to the relaxation effect. To optimally estimate sparse principal subspaces, we propose a two-stage computational framework named "tighten after relax": Within the 'relax' stage, we approximately solve a convex relaxation of sparse PCA with early stopping to obtain a desired initial estimator; For the 'tighten' stage, we propose a novel algorithm called sparse orthogonal iteration pursuit (SOAP), which iteratively refines the initial estimator by directly solving the underlying nonconvex problem. A key concept of this two-stage framework is the basin of attraction. It represents a local region within which the `tighten' stage has desired computational and statistical guarantees. We prove that, the initial estimator obtained from the 'relax' stage falls into such a region, and hence SOAP geometrically converges to a principal subspace estimator which is minimax-optimal within a certain model class. Unlike most existing sparse PCA estimators, our approach applies to the non-spiked covariance models, and adapts to non-Gaussianity as well as dependent data settings. Moreover, through analyzing the computational complexity of the two stages, we illustrate an interesting phenomenon that larger sample size can reduce the total iteration complexity. Our framework motivates a general paradigm for solving many complex statistical problems which involve nonconvex optimization with provable guarantees.Comment: 64 pages, 8 figure

    Sparse Principal Component Analysis for High Dimensional Vector Autoregressive Models

    Full text link
    We study sparse principal component analysis for high dimensional vector autoregressive time series under a doubly asymptotic framework, which allows the dimension dd to scale with the series length TT. We treat the transition matrix of time series as a nuisance parameter and directly apply sparse principal component analysis on multivariate time series as if the data are independent. We provide explicit non-asymptotic rates of convergence for leading eigenvector estimation and extend this result to principal subspace estimation. Our analysis illustrates that the spectral norm of the transition matrix plays an essential role in determining the final rates. We also characterize sufficient conditions under which sparse principal component analysis attains the optimal parametric rate. Our theoretical results are backed up by thorough numerical studies.Comment: 28 page

    Optimal computational and statistical rates of convergence for sparse nonconvex learning problems

    Full text link
    We provide theoretical analysis of the statistical and computational properties of penalized MM-estimators that can be formulated as the solution to a possibly nonconvex optimization problem. Many important estimators fall in this category, including least squares regression with nonconvex regularization, generalized linear models with nonconvex regularization and sparse elliptical random design regression. For these problems, it is intractable to calculate the global solution due to the nonconvex formulation. In this paper, we propose an approximate regularization path-following method for solving a variety of learning problems with nonconvex objective functions. Under a unified analytic framework, we simultaneously provide explicit statistical and computational rates of convergence for any local solution attained by the algorithm. Computationally, our algorithm attains a global geometric rate of convergence for calculating the full regularization path, which is optimal among all first-order algorithms. Unlike most existing methods that only attain geometric rates of convergence for one single regularization parameter, our algorithm calculates the full regularization path with the same iteration complexity. In particular, we provide a refined iteration complexity bound to sharply characterize the performance of each stage along the regularization path. Statistically, we provide sharp sample complexity analysis for all the approximate local solutions along the regularization path. In particular, our analysis improves upon existing results by providing a more refined sample complexity bound as well as an exact support recovery result for the final estimator. These results show that the final estimator attains an oracle statistical property due to the usage of nonconvex penalty.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1238 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical Limits of Convex Relaxations

    Full text link
    Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge probability estimation for stochastic block model. We exploit the sum-of-squares relaxation hierarchy to sharply characterize the limits of a broad class of convex relaxations. Our result shows statistical optimality needs to be compromised for achieving computational tractability using convex relaxations. Compared with existing results on computational lower bounds for statistical problems, which consider general polynomial-time algorithms and rely on computational hardness hypotheses on problems like planted clique detection, our theory focuses on a broad class of convex relaxations and does not rely on unproven hypotheses.Comment: 22 page

    Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes

    Full text link
    Solving statistical learning problems often involves nonconvex optimization. Despite the empirical success of nonconvex statistical optimization methods, their global dynamics, especially convergence to the desirable local minima, remain less well understood in theory. In this paper, we propose a new analytic paradigm based on diffusion processes to characterize the global dynamics of nonconvex statistical optimization. As a concrete example, we study stochastic gradient descent (SGD) for the tensor decomposition formulation of independent component analysis. In particular, we cast different phases of SGD into diffusion processes, i.e., solutions to stochastic differential equations. Initialized from an unstable equilibrium, the global dynamics of SGD transit over three consecutive phases: (i) an unstable Ornstein-Uhlenbeck process slowly departing from the initialization, (ii) the solution to an ordinary differential equation, which quickly evolves towards the desirable local minimum, and (iii) a stable Ornstein-Uhlenbeck process oscillating around the desirable local minimum. Our proof techniques are based upon Stroock and Varadhan's weak convergence of Markov chains to diffusion processes, which are of independent interest.Comment: Appeared in NIPS 201

    High-dimensional Varying Index Coefficient Models via Stein's Identity

    Full text link
    We study the parameter estimation problem for a varying index coefficient model in high dimensions. Unlike the most existing works that iteratively estimate the parameters and link functions, based on the generalized Stein's identity, we propose computationally efficient estimators for the high-dimensional parameters without estimating the link functions. We consider two different setups where we either estimate each sparse parameter vector individually or estimate the parameters simultaneously as a sparse or low-rank matrix. For all these cases, our estimators are shown to achieve optimal statistical rates of convergence (up to logarithmic terms in the low-rank setting). Moreover, throughout our analysis, we only require the covariate to satisfy certain moment conditions, which is significantly weaker than the Gaussian or elliptically symmetric assumptions that are commonly made in the existing literature. Finally, we conduct extensive numerical experiments to corroborate the theoretical results.Comment: 44 page

    Optimal linear estimation under unknown nonlinear transform

    Full text link
    Linear regression studies the problem of estimating a model parameter Ξ²βˆ—βˆˆRp\beta^* \in \mathbb{R}^p, from nn observations {(yi,xi)}i=1n\{(y_i,\mathbf{x}_i)\}_{i=1}^n from linear model yi=⟨xi,Ξ²βˆ—βŸ©+Ο΅iy_i = \langle \mathbf{x}_i,\beta^* \rangle + \epsilon_i. We consider a significant generalization in which the relationship between ⟨xi,Ξ²βˆ—βŸ©\langle \mathbf{x}_i,\beta^* \rangle and yiy_i is noisy, quantized to a single bit, potentially nonlinear, noninvertible, as well as unknown. This model is known as the single-index model in statistics, and, among other things, it represents a significant generalization of one-bit compressed sensing. We propose a novel spectral-based estimation procedure and show that we can recover Ξ²βˆ—\beta^* in settings (i.e., classes of link function ff) where previous algorithms fail. In general, our algorithm requires only very mild restrictions on the (unknown) functional relationship between yiy_i and ⟨xi,Ξ²βˆ—βŸ©\langle \mathbf{x}_i,\beta^* \rangle. We also consider the high dimensional setting where Ξ²βˆ—\beta^* is sparse ,and introduce a two-stage nonconvex framework that addresses estimation challenges in high dimensional regimes where p≫np \gg n. For a broad class of link functions between ⟨xi,Ξ²βˆ—βŸ©\langle \mathbf{x}_i,\beta^* \rangle and yiy_i, we establish minimax lower bounds that demonstrate the optimality of our estimators in both the classical and high dimensional regimes.Comment: 25 pages, 3 figure

    Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima

    Full text link
    Temporal-difference learning (TD), coupled with neural networks, is among the most fundamental building blocks of deep reinforcement learning. However, due to the nonlinearity in value function approximation, such a coupling leads to nonconvexity and even divergence in optimization. As a result, the global convergence of neural TD remains unclear. In this paper, we prove for the first time that neural TD converges at a sublinear rate to the global optimum of the mean-squared projected Bellman error for policy evaluation. In particular, we show how such global convergence is enabled by the overparametrization of neural networks, which also plays a vital role in the empirical success of neural TD. Beyond policy evaluation, we establish the global convergence of neural (soft) Q-learning, which is further connected to that of policy gradient algorithms

    Sparse Generalized Eigenvalue Problem: Optimal Statistical Rates via Truncated Rayleigh Flow

    Full text link
    Sparse generalized eigenvalue problem (GEP) plays a pivotal role in a large family of high-dimensional statistical models, including sparse Fisher's discriminant analysis, canonical correlation analysis, and sufficient dimension reduction. Sparse GEP involves solving a non-convex optimization problem. Most existing methods and theory in the context of specific statistical models that are special cases of the sparse GEP require restrictive structural assumptions on the input matrices. In this paper, we propose a two-stage computational framework to solve the sparse GEP. At the first stage, we solve a convex relaxation of the sparse GEP. Taking the solution as an initial value, we then exploit a nonconvex optimization perspective and propose the truncated Rayleigh flow method (Rifle) to estimate the leading generalized eigenvector. We show that Rifle converges linearly to a solution with the optimal statistical rate of convergence for many statistical models. Theoretically, our method significantly improves upon the existing literature by eliminating structural assumptions on the input matrices for both stages. To achieve this, our analysis involves two key ingredients: (i) a new analysis of the gradient based method on nonconvex objective functions, and (ii) a fine-grained characterization of the evolution of sparsity patterns along the solution path. Thorough numerical studies are provided to validate the theoretical results.Comment: To appear in JRSS
    • …
    corecore